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Abstract. In this paper, necessary and sufficient conditions for the conformal invariance of a 
multiple integral variational problem whose Lagrangian depends upon second-order 
derivatives of a covariant vector field are obtained. These conditions take the form of 
differential identities involving the Lagrangian, its derivatives, and the infinitesimal 
generators of the special conformal group; they differ from the classical Noether identities in 
that they involve only second-order derivatives of the field, not fourth-order derivatives. 
The conditions are not conservation laws, but rather identities which provide a practical test 
for invariance which, if established, can lead to conservation laws via the Noether theorem. 
Finally, an application to ‘generalised electrodynamics’ is given. 

1. Introduction 

It is well known that if a variational integral is invariant under an r-parameter local Lie 
group of transformations, then r combinations of the Euler-Lagrange expressions can 
be written as divergences; this is the classical Noether theorem on invariant variational 
problems (see Noether 1918, also Tavell971 for a translation in English, Logan 1977). 
Along an extremal, these r identities result in conservation laws for the system 
described by the governing Euler-Lagrange equations. Recently, Rund (1972) gave a 
new derivation of the Noether identities based upon a more fundamental set of 
invariance identities. These identities, which are similar to the Killing equations (see 
Logan 1975), involve the Lagrangian, its derivatives, and the infinitesimal generators of 
the transformations, and they contain lower derivatives of the field functions than do 
the classical identities of Noether. In the special case of the fifteen-parameter special 
conformal group (see Haantjes 1937, Ohyama 1943, and Fulton et a1 1962), Bessel- 
Hagen (1921) was first to investigate the consequences of conformal invariance of the 
action integral in electrodynamics by applying the Noether theorem to obtain the 
conservation laws. With respect to the identities obtained by Rund, Logan (1974) 
showed how those identities along with the assumption of invariance can lead to a 
characterisation of conformally invariant variational problems for scalar and covariant 
vector fields. 

The results mentioned above are for the case when the Lagrangian depends only 
upon the field functions and their first derivatives. For second-order problems, i.e. 
when the Lagrangian also depends upon second derivatives of the field functions, the 
Noether theorem and results on conservation laws are again well known (see Barut 
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1964 or Logan 1977, for example). In this paper, however, we wish to derive the 
conformal invariance identities for the second-order problem in the covariant vector 
field case. Hence, the results in this paper can be considered as an application of the 
general invariance theory for second-order variational problems which has been 
developed as an extension of Rund's work by Logan and Blakeslee (1975) and 
Blakeslee and Logan (1976). We shall obtain a necessary and sufficient condition for a 
second-order variational problem to be invariant under the special conformal group. 
From a practical point of view, this condition is useful as a test for conformal invariance, 
as we shall show by determining the non-conformal invariance of 'generalised elec- 
trodynamics'. 

The role of second-order problems in physical theories, especially continuum 
mechanics and relativity (see Grasser 1967, Borneas 1963, Logan 1977) is well 
established. In our case we shall investigate the consequences of imposing invariance 
on a multiple integral variational problem where the Lagrangian depends upon a 
covariant vector field and its first and second derivatives. To be more precise, the 
Lagrangian is a function 

L :  D x R" x R"" x R""' -+ R I ,  

where D is an open region in R ,, which is assumed to be of class C2 in all of its variables. 
For convenience, we set 

where x :  D -+ R" is a c" function having components x k ( t ) ,  k = 1, . , . , n. Here, and in 
the sequel, lower case Latin indices j ,  k, . . . range over 1, . . . , n and lower case Greek 
indices a, p, . . . range over 1, . . . , m. A generic element in the domain of L will be 
written (t, x ,  ax, a 2 x )  where t = ( r ' ,  . . . , t"), x = (xl, . . . , xn) ,  ax = (. . . , a a x k ,  . . .), and 
d2x = (. . . , a p B x k ,  . . .). The action integral is then given by 

where G, is a compact subset of D. 
Our calculations are then based on the following theorem (Blakeslee and Logan 

1975). 

Theorem 1. A necessary and sufficient condition that (1) be invariant under the 
r-parameter family of transformations 

t" = 4" ( t ,  x, E ) ,  f f k  = k ( 6  x ,  €1, E =(E1,. . . , E r )  (2) 
is that the following r invariance identities hold true: 

(3 ) 
where 



Conformal identities 1355 

are the generators of (2) and 

Remark 1. It is of course assumed that the mappings 4" and f+bk are of class c" in each of 
their m + n + r arguments, and when E = 0 the identity transformation results. 

Remark 2. The generators tkS of the x k  -* f k  transformation are determined from the 
tensorial character of the field. In the present case we assume that the X k  are 
components of a covariant vector field, i.e. 

- at* 
f a  ( t ) = - x g  ( t  ). at" 

It then follows that (see Logan 1977) 

where r; are the generators of the t" + t" transformation. 

2. Conformal transformations 

2 3 We adopt the standard space-time coordinates to = ict, t' = x ,  t = y ,  t = z of special 
relativity. Therefore (see Fulton et a1 1962) the special conformal transformations can 
be written explicitly as: 

(i) space-time translation (four parameters) 

ta ,=t"+E";  (8) 

(ii) space-time rotations (six parameters) 

T" = t u  + w i f e ,  w; =-"E; 

t" = tu  + yt"; 

(iii) dilation (one parameter) 

(9) 

(iv) inversions (four parameters) 

iu = tu + (2t"tA - tYt&)qA; (11) 
1 4 1 1 1 2 2 3  1 2 3  4 where E , . . . ,  E , w2, w3, w4, w3, w4, w4, y, q , q , q , and q are the fifteen 

independent parameters. The generators r: can be obtained directly by differentiating 
(8) through (1 1) according to (4), and consequently the generators tUs may be calculated 
using (7) which follows from the assumption that x ( t )  is a covariant vector field. We 
summarise the result in the following lemma. 

Lemma. When x = x ( t )  is a covariant vector field, the generators (4) of the special 
conformal group (8t( 11) are given by: 

(i) translations 
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(ii) rotations 

7;,= s y  - Et", SY"U = +,st - x Y s 7 ) ;  

(iii) dilation 

(14) 

7: = 2t"tA -tUt&, (,A = -2X,(t"S:+tAs;- t's,"); (15) 

7" = tu ,  6 a = -  X a ;  

(iv) inversions 

where j,t < v in (13). 

3. Conformal identities 

We are now in a position to write down a set of conformal identities for the variational 
integral (1) when (1) is invariant under the special conformal transformations (8)-(11). 
The identities that we obtain will represent a set of fifteen quasilinear first-order partial 
differential equations in the Lagrangian L and will be necessary and sufficient for (1) to 
be conformally invariant. 

Under the translations (8), it immediately follows from (3) and (12) that 

aL p = o ,  a = 1,. * .  ,4. 

These four equations state that the Lagrangian cannot depend explicitly upon the 
space-time coordinates t ' ,  . . . , t4 .  

For the dilation, or scale transformation, (lo), it can be seen from (14) that 

Substituting into (3) and using (16), we obtain the single identity 

We shall comment further on (17) in the sequel. 

CL < v, 
There are six identities obtained from the rotations (9). From (13) we get, with 

Substitution into (3) yields 
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and 

We note that NNY and M,, are antisymmetric in their indices. 
In the case of inversions, it follows from (15) that 

When these expressions are substituted into (3) and extensive simplifications are made, 
we obtain finally 

We summarise the results in the following theorem. 

Theorem 2. Let the action integral J be given by (1) where xl(t), . . . , x4(t) are 
components of a covariant vector field. If J is invariant under the special conformal 
group defined by (8)-(ll), then the Lagrangian L must satisfy the following fifteen 
identities: 

aL 
(Y = 1,.  . , 4  -- at" - 0, 

(c ) NFy + M W y  = 0 (cc, s (24) 
(4 QA =O, h = 1 ,  . . . ,  4. (25) 

Conversely, if (22)-(25) hold, then (1) is invariant under (8)-(11). 
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Besides providing a test to check whether or not a given action integral is confor- 
mally invariant, equation (23) implies the existence of homogeneity conditions in 
special circumstances. 

Corollary. If, in addition to the hypotheses on the theorem, the Lagrangian L = L(d2x) 
depends only upon second derivatives of the field functions, then L must be homogene- 
ous of degree 413; i.e. 

L(ka2x) = k4’3L(d2x), k >O. 

The proof follows directly from Euler’s theorem on homogeneous functions. 
In theory, but with difficulty in practice, theorem 2 also provides conditions which 

can be used to characterise all Lagrangians whose associated variational problem is 
conformally invariant. This can be accomplished by regarding equations (22)-(25) as a 
system of partial differential equations in the unknown Lagrangian L and using the 
method of characteristics to obtain information about L. More practical, however, is to 
use equations (22)-(25) as a test for conformal invariance of a given Lagrangian, as we 
now illustrate in the next section. We emphasise that equations (22)-(25) are neither 
conservation laws nor Noether identities; rather, they are invariance identities which 
involve only second-order derivatives of the field functions, in contrast to the Noether 
identities which involve fourth-order derivatives. 

4. Application to generalised electrodynamics 

We conclude by showing how the above results can be applied to what is usually known 
as ‘generalised electrodynamics’ (see Podolsky and Schwed 1948). This theory, which 
was developed to eliminate the infinities associated with a point source, is characterised 
by a second-order Lagrangian 

c at 

1 a2  L = - ( E 2 - H 2 ) + -  [ (div E)2-  
2 2 

where a is a constant and 

is the electromagnetic field tensor, where xl,. . . , x4 are the components of the 
four-potential; the Lagrangian is clearly second order through the appearance of the 
terms a g a ,  which contain second derivatives of the field functions x l r .  . . , x4. 

It is well known (see Bessel-Hagen 1921) that the standard action integral 

J =  [[l[-:F&dtl. . . dt4 

for the electromagnetic field in Vacuo is invariant under the special conformal group. 
Using the results of 0 3 it is possible to show that generalised electrodynamics is not 
conformally invariant unless the constant a = 0,which is the classical case. 
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To make this observation, we first calculate the various derivatives of L, where L is 
given by (26). With a little effort, it follows that: 

and 

Therefore 

and 

By substituting (28)-(31) into (23), we observe that (23) reduces to an identity only in 
the case a = 0. This fact, along with the Bessel-Hagen theorem, implies that 

J =  dt’ dt2 dt3 dt4 

is conformally invariant, where L is given by (26), if, and only if ,  a = 0. 
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